
Structured Writing for
Professionals

English 170
Stanford University, Fall 2025

Mihail Eric

The Modern Software
Developer

CS146S
Stanford University, Fall 2025

Mihail Eric

themodernsoftware.dev

Introduction and How LLMs
are Made

themodernsoftware.dev

State of the World: 2025

themodernsoftware.dev

Bad News

themodernsoftware.dev

- Windsurf team

Good News

● Software developers have the potential to be more productive than they have
ever been in history

● With AI coding an engineer can pick up tech stacks and tools at an
unprecedented pace

● You won’t be replaced by AI. You’ll be replaced by a competent engineer who
knows how to use AI.

themodernsoftware.dev

The Modern Software
Developer

themodernsoftware.dev

This is not the “vibe coding” class

themodernsoftware.dev

 10 weeks in 2 slides

themodernsoftware.dev

The Takeaway

● Human-agent engineering
○ Focus on the skills that are not yet replaced by AI systems
○ Business understanding
○ Become the tech lead

● LLMs are only as good as you are
○ Good context leads to good code
○ If you can’t understand your codebase, neither will an LLM

themodernsoftware.dev

The Takeaway

● Read and review a lot of code
○ Learn to discern good from bad, wrong software
○ Have good taste

● Experiment aggressively
○ There are no established software patterns yet
○ Everyone is still figuring it out
○ This class will introduce many workflows and tools - figure out what works for you

themodernsoftware.dev

Course Logistics

● A bit about me
○ Stanford undergrad/grad
○ Head of AI at a stealth startup in the sales space
○ Built first LLMs at Amazon Alexa
○ Founded and sold an ML education startup
○ Founded a YC-backed AI coding company

● 1 awesome CA
○ Febie Lin

themodernsoftware.dev

Course Logistics

● https://themodernsoftware.dev
● Lectures

○ Mon/Fri 8:30-9:20 am
● Deliverables

○ 9 assignments (1x/week) focusing on lecture material practice
■ https://github.com/mihail911/modern-software-dev-assignments

○ 1 final open-ended project in which you will exercise AI coding principles we cover
● Grading

○ 80/15/5 breakdown for project/assignments/participation
● Something pretty awesome

○ Guest lectures from founders leading top AI developer startups today
○ $100s of millions raised, billions in valuation
○ Don’t miss these talks!

themodernsoftware.dev

https://themodernsoftware.dev
https://github.com/mihail911/modern-software-dev-assignments

How LLMs Work in 5 Slides
(For Engineers)

themodernsoftware.dev

Basics

● LLMs (large language models) are autoregressive models for next-token
prediction

themodernsoftware.dev

Basics

themodernsoftware.dev

a for loop for

Embedding layer

0.3 the

0.6 idx

0.1 cat

Tokenize inputs using fixed vocabulary

Convert tokens into fixed-dimensional
numerical vectors (~1-3K dimensions)

Transformers layers (12-96+) using
self-attention mechanism (Viswani et.
al. 2017)

Get probability distribution over most
likely next token

Training Process

● Stage 1
○ Self-supervised pretraining
○ Teach the model notion of language on a variety of often public data sources
○ 100s of billions to trillion+ tokens (language and code)
○ Common Crawl, Wikipedia, StackExchange, Public Github repos
○ Write a for loop → that could be used in a piece of code

● Stage 2
○ Supervised finetuning
○ Teach model to follow instructions
○ High-quality, curated prompt-response pairs (“what is the capital of Croatia” -> “Zagreb is the capital”)
○ Tens of thousands to 100s of thousands of pairs
○ Write a for loop → ok here’s a for loop…

● Stage 3
○ Preferencing tuning
○ Align model outputs with human preferences (helpfulness, correctness, readability)
○ Collect pairs of outputs for same prompt and train reward model to predict preferred output
○ Tens of thousands to 100s of thousands of human-labeled comparisons
○ Write a for loop → for idx in range(10):

themodernsoftware.dev

Training Process

● Reasoning models
○ Extend training with chain-of-thought reasoning traces
○ Tool-use integration
○ Get human preferences on reasoning steps
○ Reinforcement learning to learn how to evaluate reasoning traces, backtrack, etc

● Size
○ GPT-3/Claude 3.5 Sonnet - 175B parameters
○ LLaMA 3.1 - 405B parameters
○ GPT-4 - 1.8T (reported)

themodernsoftware.dev

In practice

● Strengths
○ Expert-level code completion
○ Code understanding
○ Code fixing

● Limitations
○ Hallucinations

■ Generating non-existent/out-of-date APIs (mitigated with robust context engineering)
○ Context window limits

■ ~100-200K tokens but not all are created equal
○ Latency

■ Seconds to minutes per request depending on task (plan and delegate accordingly)
○ Cost

■ $1-3 per million input tokens, $10+ per million output tokens for best models

themodernsoftware.dev

themodernsoftware.dev

Questions?

