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Good News

● Software developers have the potential to be more productive than they have 
ever been in history

● With AI coding an engineer can pick up tech stacks and tools at an 
unprecedented pace

● You won’t be replaced by AI. You’ll be replaced by a competent engineer who 
knows how to use AI. 
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This is not the “vibe coding” class
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 10 weeks in 2 slides
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The Takeaway

● Human-agent engineering 
○ Focus on the skills that are not yet replaced by AI systems
○ Business understanding
○ Become the tech lead

● LLMs are only as good as you are
○ Good context leads to good code
○ If you can’t understand your codebase, neither will an LLM
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The Takeaway

● Read and review a lot of code
○ Learn to discern good from bad, wrong software
○ Have good taste

● Experiment aggressively
○ There are no established software patterns yet
○ Everyone is still figuring it out
○ This class will introduce many workflows and tools - figure out what works for you
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Course Logistics

● A bit about me
○ Stanford undergrad/grad
○ Head of AI at a stealth startup in the sales space
○ Built first LLMs at Amazon Alexa
○ Founded and sold an ML education startup
○ Founded a YC-backed AI coding company

● 1 awesome CA
○ Febie Lin
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Course Logistics

● https://themodernsoftware.dev
● Lectures

○ Mon/Fri 8:30-9:20 am
● Deliverables

○ 9 assignments (1x/week) focusing on lecture material practice
■ https://github.com/mihail911/modern-software-dev-assignments

○ 1 final open-ended project in which you will exercise AI coding principles we cover
● Grading

○ 80/15/5 breakdown for project/assignments/participation
● Something pretty awesome

○ Guest lectures from founders leading top AI developer startups today
○ $100s of millions raised, billions in valuation
○ Don’t miss these talks!
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How LLMs Work in 5 Slides 
(For Engineers)
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Basics

● LLMs (large language models) are autoregressive models for next-token 
prediction
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Basics

themodernsoftware.dev

a for loop for 

Embedding layer

0.3 the

0.6 idx

0.1 cat

Tokenize inputs using fixed vocabulary

Convert tokens into fixed-dimensional 
numerical vectors (~1-3K dimensions)

Transformers layers (12-96+) using 
self-attention mechanism (Viswani et. 
al. 2017)

Get probability distribution over most 
likely next token



Training Process

● Stage 1
○ Self-supervised pretraining
○ Teach the model notion of language on a variety of often public data sources
○ 100s of billions to trillion+ tokens (language and code)
○ Common Crawl, Wikipedia, StackExchange, Public Github repos
○ Write a for loop → that could be used in a piece of code

● Stage 2
○ Supervised finetuning
○ Teach model to follow instructions
○ High-quality, curated prompt-response pairs (“what is the capital of Croatia” -> “Zagreb is the capital”)
○ Tens of thousands to 100s of thousands of pairs 
○ Write a for loop → ok here’s a for loop…

● Stage 3
○ Preferencing tuning
○ Align model outputs with human preferences (helpfulness, correctness, readability)
○ Collect pairs of outputs for same prompt and train reward model to predict preferred output
○ Tens of thousands to 100s of thousands of human-labeled comparisons
○ Write a for loop → for idx in range(10):
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Training Process

● Reasoning models
○ Extend training with chain-of-thought reasoning traces
○ Tool-use integration
○ Get human preferences on reasoning steps
○ Reinforcement learning to learn how to evaluate reasoning traces, backtrack, etc

● Size
○ GPT-3/Claude 3.5 Sonnet - 175B parameters
○ LLaMA 3.1 - 405B parameters
○ GPT-4 - 1.8T (reported)
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In practice

● Strengths
○ Expert-level code completion
○ Code understanding
○ Code fixing

● Limitations
○ Hallucinations

■ Generating non-existent/out-of-date APIs (mitigated with robust context engineering)
○ Context window limits

■ ~100-200K tokens but not all are created equal
○ Latency

■ Seconds to minutes per request depending on task (plan and delegate accordingly)
○ Cost

■ $1-3 per million input tokens, $10+ per million output tokens for best models
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